- BASSETT, G. A., MENTER, J. W. & PASHLEY, D. W. (1957). Nature, Lond. 179, 752.
- BRINDLEY, G. W., COMER, J. J., UYEDA, R. & ZUSSMAN, J. (1958). Acta Cryst. 11, 99.
- Cowley, J. M. & Moodle, A. F. (1957a). Acta Cryst. 10, 609.
- Cowley, J. M. & Moodle, A. F. (1957b). Proc. Phys. Soc. B, 70, 486.
- Cowley, J. M. & Moodle, A. F. (1957c). Proc. Phys. Soc. B, 70, 497.
- Cowley, J. M. & Moodle, A. F. (1957d). Proc. Phys. Soc. B, 70, 505.
- Cowley, J. M. & Moodle, A. F. (1958). Proc. Phys. Soc. 71, 533.
- Cowley, J. M. & Moodle, A. F. (1959). Acta Cryst. 12, 360.
- DOWELL, W. C. T., FARRANT, J. L. & REES, A. L. G. (1954). Proceedings of the 3rd International Conference on Electron Microscopy, London, p. 279.
- DOWELL, W. C. T., FARRANT, J. L. & REES, A. L. G. (1956). Proceedings of the Regional Conference on Electron Microscopy, Tokyo, p. 320.

- . GOODMAN, J. F. (1957). Nature, Lond. 180, 425.
 - HAINE, M. E. (1957). J. Sci. Instrum. 34, 9.
 - HASHIMOTO, H. & UYEDA, R. (1957). Acta Cryst. 10, 143.
 - HEIDENREICH, R. D. (1950). Phys. Rev. 77, 271.
 - HOERNI, J. (1956). Phys. Rev. 102, 1534.
 - KUNZE, G. (1958). Z. Kristallogr., 110, 282.
 - MENTER, J. W. (1956a). Proc. Roy. Soc. A, 236, 119.
 - MENTER, J. W. (1956b). Electron Microscopy, Proceedings of the Stockholm Conference, p. 88.
 - MITSUISHI, T., NAGASAKI, H. & UYEDA, R. (1951). Proc. Japan Acad. 27, 86.
 - NEIDER, R. (1956). Electron Microscopy, Proceedings of the Stockholm Conference, p. 93.
 - SUITO, E. & UYEDA, N. (1957). Proc. Japan Acad. 33, 398.
 - UYEDA, R. (1955). J. Phys. Soc. Japan, 10, 256.
 - UYEDA, R., MASUDA, T., TOCHIGI, H., ITO, K. & YOTSU-MOTO, H. (1958). J. Phys. Soc. Japan, 13, 461.
 - ZUSSMAN, J., BRINDLEY, G. W. & COMER, J. J. (1957). Amer. Mineral. 42, 133.

Acta Cryst. (1959). 12, 375

Equi-Inclination Weissenberg Intensity Correction Factors for Absorption in Spheres and Cylinders, and for Crystal Monochromatized Radiation

BY W. L. BOND

Bell Telephone Laboratories, Inc., Murray Hill, New Jersey, U.S.A.

(Received 3 March 1958 and in revised form 8 October and 21 November 1958)

Increased precision of intensity measurements through the use of counting methods calls for more careful corrections. A new absorption correction table is presented for cylinders with μR running from 0 to 8 by tenths and on to 20 by units; also a table for spheres, μR running from 0 to 10 by tenths. In both tables θ runs from 0° to 90° in 5° steps. For cylinders, the correction factor for upper levels is gotten by entering the table with $\mu R \sec v$ in place of μR and $\Upsilon/2$ in place of θ , then multiply this value by cos v. Tables are also given of the power series coefficients to be used in expanding absorption factors for very large cylinders. A combined polarization Lorentz correction factor is presented for the case of crystal monochromatized radiation.

Introduction

In recent years, there has been increasing emphasis on obtaining highly accurate structure amplitudes from single crystal X-ray data. In the course of work in these Laboratories on a single crystal automatic diffractometer (Bond, 1955; Benedict, 1955), several problems arose with regard to the conversion of intensities to structure amplitudes. These involved: (1) A Lorentz-polarization correction for monochromatized radiation; (2) expanding and improving the absorption tables for cylindrical and spherical crystals; and (3) deriving the method for absorption correction of upper level equi-inclination Weissenberg intensities. In particular, the latter has, as far as can be ascertained, been ignored. It is rather difficult to see how even for very small crystals containing light atoms, one can claim great accuracy (some claims have been 3%) for F's obtained say from layers with $\nu \cong 30^{\circ}$ when such proper correction has not been made. As an example for $\mu R = 1$, $\mu = 20^{\circ}$, $\Upsilon = 10^{\circ}$ the absorption correction is 5.09 not 4.80 as is gotten from $\mu R = 1$, true $\theta = 20.6^{\circ}$.

Absorption correction tables

Consider scattering from a very small element of volume ΔV bathed in a uniform monochromatic collimated beam of X-rays. Let the beam be of intensity I watts cm.⁻² and let the scattering power in a direction parallel to a vector **r** be ρ_r watts per cm.³

per incident watt per cm.². In these terms the total power scattered parallel to \mathbf{r} is

$$P_r = I \rho_r \Delta V \tag{1}$$

watts. This is the power entering the radiation detector RD, Fig. 1. Now consider scattering from a large body

Fig. 1. Power scattered in a direction **r** from an element of volume.

of volume V which has a linear absorption coefficient μ , Fig. 2. Choose an element of volume, ΔV in V. The

Fig. 2. Power scattered from a finite volume.

intensity I' falling on ΔV is $I' = I \exp(-\mu p_1)$ where p_1 is the path length, inside V of the incident radiation. The power leaving ΔV in the direction \mathbf{r} is therefore $\Delta P'_r = I' \varrho_r \Delta V$ but this is further reduced by absorption along the path p_2 to $\Delta P_r = \Delta P'_r \exp(-\mu P_2)$. Whence the total power received by a properly placed radiation detector is

$$P_r = I \varrho_r \sum_{V} \exp((-\mu p) \Delta V \quad \text{where} \quad p = p_1 + p_2 . \quad (2)$$

Cylindrical specimens

Fig. 3 shows a circular cylinder receiving rays in a direction normal to its axis and scattering in a direction **r** also normal to this axis—the zero level case. Now let $\Delta V = w\Delta S$ where S is the cross sectional area of the cylinder, the length w being the width of the incident beam. Thus $P_r = I\varrho_r w \sum_{s} \exp(-\mu p)\Delta S$. Following Claassen (1930) we now replace S by s where:

 $S = \pi R^2 s$

whence

$$P_r = \pi R^2 I \varrho_r w \sum_{s} \exp((-\mu p) \Delta s, \qquad (3)$$

where Δs is the fraction of the cross section in the area element which has path length p. For Bragg

Fig. 3. Power scattered out of a cylinder.

angles θ of 0°, 22·5, 45°, 67·5 and 90° Claassen constructed curves of equal path length in a set of circles, the path lengths being 1/5R, 2/5R, etc. A planimeter was then used to measure the areas between successive curves and hence compute a set of Δs 's. From this small set of Δs 's with their associated path lengths he computed values for $A(\mu, \theta) = \Sigma \exp(-\mu gR)\Delta s$ where gR is the effective path length associated with Δs . Now making the proper substitution in (3)

$$P_r = \pi R^2 I \rho_r w A_\theta \tag{4}$$

or solving for ρ_r

$$\varrho_r = P_r (\pi R^2 I w)^{-1} A_{\theta}^{-1}$$
.

For relative values of ρ_r the terms π , R^2 , I and w may be omitted. These relative ρ_r 's are the intensities corrected only for absorption.

Fig. 4. Paths in a cylinder.

The accuracy of Claassen's method is limited by the necessity of drawing curves of equal path length and the measurement of areas by means of a planiTable 1. Areas $\triangle s$ attributable to reduced paths g.

<u>0°</u>	<u>5°</u>	10°	<u>15°</u> ΔS <u>β</u>	<u>20°</u>	25° ΔSg	<u>30°</u>	<u>35°</u>	<u>μη</u> .	45°
.00039 .05 .00137 .15 .00137 .15 .00120 .25 .00320 .33 .00332 .45 .00352 .55 .00713 .65 .00733 .65 .00635 .95 .00635 1.05 .00557 1.15 .00557 1.15 .00556 1.05 .00599 1.55 .00599 1.55 .005999 1.55 .00599 1.55 .00599 1.55 .00599 1.55 .00	-0033 0.050 .00076 0.150 .0024 0.550 .0024 0.550 .00527 0.550 .00527 0.550 .00734 0.650 .00734 0.650 .00985 0.750 .01263 0.850 .02664 1.050 .02664 1.050 .02964 1.050 .02964 1.050 .02964 1.550 .02964 1.550 .02964 1.550 .02964 1.550 .03974 1.550 .03964 1.550 .04964 1.550 .03964 1.5500 .03964 1.5500 .03964 1.5500 .03964 1.55000 .03	.0094 0.050 .00164 0.150 .00349 0.350 .00349 0.350 .00465 0.450 .00600 0.550 .00760 0.650 .01038 0.750 .0138 0.850 .02542 1.150 .02542 1.150 .02542 1.150 .02542 1.150 .03904 1.250 .03914 1.450 .03914 1.450 .03918 1.750 .1513 1.850 .17033 2.015	0019 05 0028 15 0039 25 0051 35 0065 15 0080 55 0097 65 0016 75 0016 75 0016 75 0028 1.05 0028 1.05 0028 1.05 0028 1.25 0036 1.35 0036 1.35 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36	.00388 0.059 .00423 0.150 .00549 0.250 .00659 0.250 .00659 0.350 .00639 0.350 .00833 0.450 .01303 0.650 .01303 0.650 .01393 0.650 .01393 0.650 .01393 0.650 .01393 0.650 .01393 0.650 .01393 0.650 .01393 0.650 .01392 0.450 .02411 1.450 .03333 1.350 .04141 1.450 .03512 1.650 .04197 1.550 .04197 1.550 .04197 1.550 .04197 1.550 .05752 1.5134 .05752 2.114	.00457 2.0550 .00590 0.150 .00886 0.350 .00886 0.350 .0161 0.450 .0162 0.550 .01629 0.550 .01629 0.550 .01629 0.550 .01624 0.650 .02840 1.050 .02820 1.050 .02823 1.150 .02823 1.250 .03284 1.350 .03284 1.350 .03284 1.4550 .03284 1.4550 .03284 1.4550 .03284 1.4550 .03284 1.4550 .03284 1.4550 .03282 1.4550 .03282 1.4550 .03282 1.4550 .03282 1.4550 .03282 1.4550 .03282 1.4550 .01292 2.223	-0063 .05 .0078 .15 .0127 .45 .0127 .45 .0127 .45 .0124 .45 .0126 .75 .0264 .65 .0289 .75 .0280 .85 .0289 .15 .0399 1.25 .0391 1.35 .0445 1.55 .0445 1.45 .0445 1.45 .05 .0445 1.45 .05 .0445 2.45 .0445 2.45 .045 2.45 2.45 2.45 2.45 2.45 .045 2.45 2.45 2.45 .045 2.45	00828 0.059 00926 0.155 00926 0.155 00126 0.255 00124 0.353 0.0167 0.555 0.01661 0.655 0.02483 0.955 0.02483 0.955 0.02483 0.955 0.02483 0.955 0.0212 1.055 0.02483 1.355 0.02483 1.355 0.02483 1.355 0.02484 1.355 0.02484 1.355 0.04122 1.555 0.04123 1.555 0.04124 1.555 0.0455	131046 0.955 13121 0.265 131371 0.265 131371 0.265 131371 0.455 131371 0.455 131371 0.455 131371 0.455 12265 0.753 12265 0.753 12265 0.953 12265 1.953 123286 1.253 123286 1.253 123286 1.253 124348 1.655 126527 2.453 126527 2.453 126527 2.453 126527 2.453 126527 2.453 126527 2.453 126527 2.453 126527 2.453 126527 2.453 126528 2.453 126529 2.553 126529 2.553 126529 2.553 126529 2.553 126529 2.553	1129 05 0144 05 0146 05 0177 05 0210 55 0227 05 0228 05 0228 05 0228 05 0228 05 0228 05 0228 05 0237 05 0248 05 0237 05 0337 05 0337 05 0337 05 0337 05 0337 05 0337 05 0337 05 0337 05 05 0337 05 0337 05 0355 05 05 05 05 05 05 05 05 05 05
<u>– 50°</u>	<u>55"</u>	<u>60*</u>	<u>65</u> ° ∆S g	<u>Δs</u>	9°75'	<u>- 8</u> 2	<u> </u>	<u>85*</u> ΔS	<u>90°</u>
	.11786 .5500 .21235 .150 .22274 .250 .22274 .250 .22367 .550 .22367 .550 .22367 .550 .22567 .550 .22694 .650 .30221 .550 .33265 .1.45 .33265 .1.45 .33267 .2.45 .33267 .2.45 .33277 .2.45 .32667 .3.238	.3204 .35 .0237 .15 .0230 .25 .2246 .35 .0256 .55 .0256 .55 .0256 .55 .0256 .55 .0256 .55 .0256 .55 .0250 .55 .0250 .0250 .05 .0310 .95 .0310 .95 .0310 .155 .0316 1.45 .0355 1.455 .0355 1.455 .0356 2.455 .0316 2.455 .0316 2.455 .0316 2.455 .0326		0 0.02551 0.02657 0.02731 0.02634 0.02694 0.02694 0.02694 0.038759 0.03875 0.03875 0.03825 0.03825 0.03825 0.03825 0.03825 0.03825 0.03825 0.03825 0.03825 0.03825 0.03825 0.03855 0.0	- 3500 - 3278 - 3287 - 1550 - 3287 - 2500 - 0281 - 3300 - 4550 - 0307 - 4550 - 4550 - 0307 - 4550 - 4550 - 0314 - 1 - 455 - 0315 - 1 - 455 - 0315 - 1 - 455 - 0315 - 1 - 1,55 - 0312 - 1 - 1,55 - 0312 - 1 - 1,55 - 0313 - 1 - 1,55 - 0313 - 1 - 1,55 - 0353 - 1 - 1,55 - 0285 - 2 - 2,55 - 0265 - 2 - 2,55 - 0267 - 2 - 3,55 - 0153 - 3 - 5,5 - 0154				- .15 .35 .35 .25 .25 .25 .25 .25 .25 .25 .2

meter. To avoid this graphic approach the IBM $\sharp 650$ has been used to make the computations. Consider a circle, (Fig. 4) about the origin and a beam entering from the upper right reflecting from an element of an area about the point x, y, hence leaving towards the lower right, the deflection angle being 2θ . The path length inside the circle is:

$$p = R \cdot \{1 - (x \cos \theta - y \sin \theta)^2\}^{\frac{1}{2}} + R\{1 - (x \cos \theta + y \sin \theta)^2\}^{\frac{1}{2}} - 2xR \sin \theta \dots, (5)$$

where x and y are now fractions of R.

For θ values of 0, 5°, 10°, ..., 90° and path lengths .1*R*, .2*R*... an I.B.M. card Programmed Electronic Calculator solved equation (5) and integrated to give the areas of the regions. If a mean path length is attributed to each region the results are as in Table 1. As an example of the use of this table consider the case $\mu R = 2, \ \theta = 0$. Now $\begin{aligned} A &= 0.00005 \exp(-2 \times 0.05) + 0.0037 \exp(-2 \times 0.15) \\ &+ 0.00102 \exp(-2 \times 0.25) + \\ &+ 0.39101 \exp(-2 \times 1.95) + \dots \end{aligned}$

It is more convenient in use to replace A by the correction factor A^* , i.e. the number by which the observed intensity should be multiplied to get the 'absorption free' intensity. In this way Table 2 has been prepared.

For values of $\mu R > 8$, the above method gives erroneous results since too much of the scattering is from the surface of the element of area of the shortest path length. For μR large then, the first zones are too large and should be subdivided to give a better evaluation of A. This subdivision can be approximated by finding s (see (3)) as a function of g near s = 0. If $s = \alpha g + \beta g^2 + \gamma g^3 \dots$ then

$$ds = (lpha + 2eta g + 3\gamma g^2 \dots) dg$$

Table 2.	Absorption	correction	factors	A^*	for	X-ray	intensitie	3
		Cylinders	of radius	$\mathbf{s} R$				

<u>u</u> R	0•	<u>5°</u>	10°	15°	20•	250	30°	<u>35°</u>	40°	45°	50°	55°	60°_	65°	70°	75°	80°	85°		pR
0	1,00	1.00	1.00	1,00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0
•1	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	.1
.3	1.65	1.65	1.65	1.65	1.65	1.64	1.64	1.63	1.63	1.62	1.62	1.61	1.61	1.60	1.59	1.59	1.59	1.59	1.59	.3
-4	1.95	1.95	1.95	1.94	1.94	1.93	1.92	1.91	1,90	1.89	1.87	1.86	1.85	1.84	1.83	1.82	1.82	1.81	1.81	-4
:6	2.69	2.69	2.69	2.67	2.65	2.63	2.60	2.57	2.53	2.50	2.47	2.43	2.40	2.37	2.35	2.33	2.31	2.30	2.30	.6
•7	3.16	3.16	3.15	3.13	3.09	3.05	3.01	2.96	2.91	2.85	2.80	2.75	2.71	2.66	2.63	2.60	2.58	2.56	2.56	•?
.9	4.33	4.33	4.30	4.24	4.17	4.08	3.98	3.87	3.76	3.65	3.55	3.46	3.37	3.29	3.23	3.18	3.14	3.11	3.11	
1.0	5.06	5.05	5.01	4.92	4.81	4.68	4-54	4.39	4.24	4.10	3.97	3.84	3.73	3.63	3.55	3.48	3.43	3.40	3.39	1.0
1.2	6.86	6.84	6.74	6.57	6.35	6.10	5.84	5.57	5.32	5.08	4.86	4.66	4.49	4.33	4.20	4.11	4.03	3.98	3.97	1.2
1.3	7.96	7.93	7.79	7.55	7.25	6.92 7.82	6.58 7.37	6.23	5.91	5.61 6.16	5.34	5.09	4.88 5.29	5.07	4.54	4.43	4.34	4.28	4.27	1.3
1.5	10.7	10.6	10.3	9.88	9.35	8.79	8.22	7.68	7.19	6.74	6.35	6.00	5,71	5.45	5.24	5.08	4.96	4.89	4.87	1.5
1.6	12.3	12.2	11.8	11.2	10.6	9.84	9.13	8.47	7.87	7.96	7.42	6.95	6.57	6.23	5.96	5.75	5.60	5.19	5.48	1.0
1.8	16.3	16.0	15.4	14.4	13.3	12.2	11.1	10.2	9.32	8.59	7.97	7.45	7.01	6.63	6.33	6.09	5.92	5.81	5.78	1.8
$\frac{1.9}{2.0}$	18.6	18.3	17.5	18.2	16.5	-13.5	13.3	12.0	10.1	9.25	9.12	8.45	7.91	7.44	7.06	6.78	6.56	6.43	6.40	2.0
2.1	24.2	23.7	22.3	20.3	18.2	16.2	14.5	12.9	11.7	10.6	9.71	8.97	8.36	7.84	7.44	7.13	6.89	6.75	6.71	2.1
2.2	27.5	30.4	25.1	22.0	20.1	19.3	16.9	14.9	13.3	12.0	10.9	10.0	9.29	8.67	8.19	7.82	7.54	7.38	7.33	2.3
2.4	35.3	34.2	31.4	27.7	24.1	20.9	18.2	16.0	14.2	12.7	11.5	10.5	9.76	9.09	8.57	8.17	7.87	7.69	7.64	2.4
2.6	39.8	43.1	38.7	33.4	28.5	24.2	20.8	18.1	15.9	14.2	12.8	11.6	10.7	9.93	9.33	8.88	8.53	8.33	8.27	2.6
2.7	50.1	48.1	42.8	36.5	30.8	26.0	22.2	19.2	16.8	14.9	13.4	12.2	11.2	10.4	9.72	9.23	8.87	8.64	8.58	2.7
2.9	62.5	59.4	51.8	43.1	35.7	29.6	25.0	21.4	18.6	16.4	14.6	13.2	12.1	11.2	10.5	9.95	9.53	9.28	9.21	2.9
3.0	69.5	65.8	56.7	46.6	38.2	31.5	26.4	22.5	19.5	17.1	15.3	13.8	12.6	11.6	10.9	10.3	9.86	9.60	9.53	3.0
3.2	85.4	79.9	67.3	54.0	43.5	35.4	29.3	24.8	21.4	18.7	16.6	14.9	13.6	12.5	11.7	11.0	10.5	10.2	10.2	3.2
3.3	94.2	87.6	72.9	57.9	46.2	37.3	30.8	26.0	22.3	19.4	17.2	15.5	14.1	12.9	12.0	11.4	10.9	10.6	10.5	3.3
3.5	114	105	85.0	65.9	51.7	41.3	33.8	28.3	24.2	21.0	18.5	16.6	15.1	13.8	12.8	12.1	11.5	11.2	11.1	3.5
3.6	125	114	91.4	70.1	54.6	43.3	35.3	29.5	25.1	21.7	19.2	17.1	15.6	14.2	13.2	12.5	11.9	11.5	11.4	3.6
3.8	149	134	105	78.7	60.4	47.5	38.4	31.9	27.0	23.3	20.5	18.3	16.6	15.1	14.0	13.2	12.6	12.2	12.1	3.8
3.9	162	145	112	83.1	$-\frac{63.3}{66.3}$	49.5	39.9	33.1	28.0	24.1	21.2	18.8	17.1	15.6	14.4	13.6	12.9	12.5	12.4	<u>3.9</u> 4.0
4.1	190	168	127	92.1	69.3	53.8	43.1	35.5	29.9	25.7	22.5	20.0	18.1	16.4	15.2	14.3	13.6	13.1	13.0	4.1
4.2	206	193	134	101	72.3	58.0	46.2	37.9	31.8	27.3	23.8	21.1	19.1	17.3	16.0	15.0	14.3	13.8	13.7	4.2
4.4	239	206	150	106	78.5	60.2	47.8	39.1	32.8	28.1	24.5	21.7	19.6	17.8	16.4	15.4	14.6	14.1	14.0	4.4
4.5	275	234	166	116	84.7	64.5	51.0	41.6	34.8	29.7	25.8	22.9	20.6	18.7	17.2	16.1	15.3	14.8	14.6	4.6
4.7	295	249	175	121	87.8	66.7	52.6	42.8	35.8	30.5	26.5	23.4	21.1	19.1	17.6	16.5	15.6	15.1	14.9	4.7
4.9	337	280	192	130	94.2	71.1	55.8	45.3	37.7	32.1	27.9	24.6	22.1	20.0	18.4	17.2	16.3	15.7	15.6	4.9
5.0	359	296	200	135	97.4	73.3	57.5 59.1	46.6	38.7	32.9	28.6	25.2	22.6	20.5	18.8	17.6	16.7	16.1	15.9	5.0
5.2	407	330	218	145	104	77.8	60.7	49.1	40.7	34.5	29.9	26.3	23.6	21.4	19.6	18.3	17.3	16.7	16.6	5.2
5.3	432	348	228	150	107	80.0	64.0	50.3	41.7	36.1	31.3	27.5	24.1	22.3	20.0	18.7	18.0	17.4	17.2	2.3
5.5	485	384	246	161	114	84.5	65.7	52.9	43.7	37.0	32.0	28.1	25.2	22.7	20.9	19.5	18.4	17.7	17.5	5.5
5.0	513	403	265	100	120	80.8	69.0	55.4	44.7	38.6	33.4	29.3	26.2	23.6	21.7	20.2	19.1	18.0	18.2	5.7
5.8	573	442	275	176	124	91.4	70.7	56.7	46.8	39.4	34.0	29.9	26.7	24.1	22.1	20.6	19.4	18.7	18.5	5.8
6.0	636	483	294	187		95.9	74.0	59.2	48.8	41.1	35.4	31.0	27.7	25.0	22.9	21.3	20.1	19.4	19.2	6.0
6.1	670	504	304	192	134	98.3	75.7	60.5	49.8	41.9	36.1	31.6	28.3	25.4	23.3	21.7	20.5	19.7	19.5	6.1
6.3	740	547	324	203	140	103	79.1	63.1	51.9	43.6	37.5	32.8	29.3	26.4	24.1	22.5	21.2	20.4	20.2	6.3
6.4	777	569	334	209	144	105	80.8	64.4	52.9	44.4	38.2	33.4	29.8	26.8	24.6	22.8	21.5	20.7	20.5	6.4
6.6	853	614	355	219	151	110	84.2	67.0	54.9	46.1	39.6	34.6	30.9	27.7	25.4	23.6	22.2	21.4	21.1	6.6
6.7	894	638	365	225	154	112	85.9	68.3 69.6	56.0 57.0	46.9	40.3	35.2	31.4	28.2	25.8	24.0 24.1	22.6	21.7	21.5	6.7 6.8
6.9	978	685	386	236	161		89.4	70.9	58.0	48.6	41.7	36.4	32.4	29.1	26.6	24.8	23.3	22.4	22.1	6.9
7.0	1022	710	397 408	242	165 168	119 122	92.8	73.6	59.1 60.1	49.4 50.3	42.4	37.0	ن.رز 33.5	29.6	27.0	25.5	23.7	22.7	22.8	7.0
7.2	1113	760	418	253	172	124	94.6	74.9	61.2	51.1	43.8	38.2	34.0	30.5	27.9	25.9	24.4	23.4	23.1	7.2
7.4	1210	811	429	264	179	129	98.1	77.5	63.3	52.8	45.3	39.5	35.1	31.5	28.7	26.7	25.1	24.1	23.8	7.4
7.5	1260	837	451	270	182	131	99.8	78.9	64.3	53.7	46.0	40.1	35.6	31.9	29.2	27.1	25.5	24.4	24.1	7.5
7.7	1364	891	473	281	190	136	103	81.5	66.4	55.4	47.4	41.3	36.7	32.9	30.0	27.8	26.2	25.1	24.8	7.7
7.8	1418	918	484	287	193	139	105	82.9	67.5	56.2	48.1	41.9	37.2	33.3	30.4 30.8	28.2	26.5	25.5	25.2	7.8
1.2	1530	974	507	299	200	144	109	85.5	69.6	58.0	49.5	43.1	38.3	34.3	31.3	29.0	27.3	26.1	25.8	
10	2200 3050	1270	023 743	357 417	236 272	167 191	126	98.1	69.7	05.0 74.2	50.3 63.0	48.7 54.3	43.2	43.0	39.1	36.1	33.9	32.4	28.9 31.9	10
11	4080	1950	868	478	300	215	160	124	99.7	82.4	69.8	60.0	53.2	47.4	43.1	39.7	37.3	35.5	35.0	11
13	5320 6790	2320	1130	541 604	345 381	261	178	137	120	90.6	83.4	71.3	58.2 63.2	56.1	50.9	43.3	43.9	41.9	41.2	12
14	8500	3110	1260	667	419	289	212	163	130	107	90.1	77.0	68.2	60.5	54.9	50.5	47.2	45.1	44.3	14
15	10500	3530 3910	1540	731 795	457	313	230	139	140	124	104	82.7	78.2	69.2	58.8 62.8	57.7	54.0	51.5	50.6	15
17	15300	4410	1695	860	532	362	265	203	161	132	111	94.0	83.2	73.6	66.8	61.3	57.3	54.6	50.7	17
19	21400	4860 5320	1960	491	610	387 412	282 300	229	181	140	118	105	88.2 93.2	78.0 82.4	74.7	68.5	64.1	61.0	60.0	18
2Ó	25000	5790	2100	105Ō	649	438	317	242	192	157	131	111	98.4	86.8	78.7	72.3	67.6	64.3	63.1	zÓ
nR	00	- 50-	100	150	200	25°	30°	35°	400	45°	500	550	60°	65°	70°		80°	85°	90°	11.8

and

$$A = \int \exp((-\mu g R) ds$$

becomes

$$A = lpha/\mu R + 2eta/(\mu R)^2 + 6\gamma/(\mu R)^3 + 24\delta/(\mu R)^4 + 120arepsilon/(\mu R)^5 + 720\zeta/(\mu r)^6$$
 etc.

$$A = \alpha \int_0^\infty \exp((-\mu gR) dg + 2\beta \int_0^\infty \exp((-\mu gR) g dg + 3\gamma \int_0^\infty \exp((-\mu gR) g^2 dg$$

etc. or

If we plot, from Table 1, the sum of the first *i* values of Δs against the *i*th value of g(i = 1, 2, 3...) we have a graph of *s* as a function of *g*. Empirical means can be used to find from these data a power series expressing *s* as a function of *g*. The first coefficient α can be computed exactly and using this value the

Fig. 5. Path lengths in a semi-infinite solid.

next few coefficients may be found empirically. Consider scattering from an element of volume ΔV inside a semi infinite solid, Fig. 5,

$$\Delta P_r = I \varrho_r \exp\left[-\mu (p_1 + p_2)\right] \Delta V$$

but $x = p_1 \sin \Phi = p_2 \sin (2\theta - \Phi)$ so

$$\Delta P_{r} = I \varrho_{r} \exp\left[-\mu p_{1}\left\{1 + \frac{\sin \Phi}{\sin\left(2\theta - \Phi\right)}\right\}\right] \Delta V$$

$$\uparrow r$$

$$\sigma$$

$$\varphi$$

$$\downarrow - \rho_{1} \rightarrow \downarrow \downarrow - \rho_{1}$$

Fig. 6. Scattering from an element of volume in a semi-infinite solid.

A beam of cross sectional area σ (see Fig. 6) sends power

$$P_{r} = I \varrho_{r} \sigma \int^{\infty} \exp \left[-\mu p_{1} \left\{ 1 + \frac{\sin \Phi}{\sin (2\theta - \Phi)} \right\} \right] dp_{1}$$

in the direction **r**.

Integrating:

$$P_r = \frac{I\varrho_r \sigma \sin (2\theta - \Phi)}{\mu \left[\sin \Phi + \sin (2\theta - \Phi)\right]}.$$

Now consider the effective scattering section, of the cylinder, Fig. 7, the part between $\Phi = 0$ and $\Phi = 2\theta$. We can compute the power sent parallel to **r** by an infinity of blocks of length $R \Delta \Phi$. Here σ of the preceding equation is replaced by $\Delta \sigma = wR \sin \Phi \Delta \Phi$ so that the power increment is

Fig. 7. Scattering from a cylinder of large μ .

$$\Delta P_v = \frac{I_{Q_T} w R}{\mu} \cdot \frac{\sin \Phi \sin (2\theta - \Phi)}{\sin \Phi + \sin (2\theta - \Phi)} \Delta \Phi$$

and

$$P_{v} = \frac{I \varrho_{r} w R}{\mu} \int_{\Phi+0}^{2\theta} \frac{\sin \Phi \sin (2\theta - \Phi)}{\sin \Phi + \sin (2\theta - \Phi)} \ d\Phi$$

Integrating

$$P_r = \frac{I\varrho_r w R}{\mu} \left\{ 1 - \frac{\cos^2 \theta}{\sin \theta} \ln \ \tan \left(\frac{\pi}{4} + \frac{\theta}{2} \right) \right\} \,.$$

Comparing this with equation (4)

$$A_{ heta} = rac{1}{\pi\mu R} \left\{ 1 - rac{\cos^2 heta}{\sin heta} \ln \ an\left(rac{\pi}{4} + rac{ heta}{2}
ight)
ight\}$$
 for μR large.

Hence the coefficient of $(\mu R)^{-1}$ is

$$\pi^{-1}\left\{1-rac{\cos^2 heta}{\sin heta}\ln\ an\left(rac{\pi}{4}+rac{ heta}{2}
ight)
ight\}\,.$$

Table 3. Coefficients for 5° intervals of θ

θ	α	2β	6γ	248	120ε		5040η
0	0	0	0.3183	0	0.955	0	7.1
5	0.001615	0.0314	0.0648	0.835	0.14		
10	0.00642	0.053	0.179	0.057			
15	0.01442	0.086	0.061	0.33			
20	0.0254	0.105	0.080	0.13			
25	0.0394	0.123	0.073	0.16			
30	0.0560	0.139	0				
35	0.0752	0.150	-0.022				
40	0.0966	0.159	-0.10				
45	0.1199	0.164	-0.16				
50	0.1448	0.16	-0.50				
55	0.1741	0.13	-0.30				
60	0.1984	0.11	-0.51				
65	0.226	0.10	-0.33				
70	0.250	0.102	-0.48				
75	0.274	0.08	-0.52				
80	0.295	0.064	-0.64				
85	0.3107	0.03	-0.5				
90	0.3183	0	-0.53				

For small θ , $\alpha = 2\theta^2/(3\pi)$.

 $A \coloneqq \alpha/(\mu R) + 2\beta/(\mu^2 R^2) \dots$

Table 3 gives the values of the coefficients for 5° intervals of θ . We can find A and hence A^* for intermediate values of θ by plotting A against $\sin^2 \theta$ (Bradley, 1935).

Optimum size of cylinders for the zero level

Equation (4) indicates that the power received by the radiation detector is proportional to $(\mu R)^2 A\theta$. Plots of $(\mu R)^2 A^*$ show that for $\theta = 0^\circ$ the optimum size is $\mu R = 1.35$, for $\theta = 10^\circ$ it is $\mu R = 1.45$ and for $\theta = 20^\circ$ it is $\mu R = 1.9$. Above $\theta = 25^\circ$ there is no optimum since $(\mu R)^2 A^*$ rises continuously from $\mu R = 0$ to $\mu R = \infty$ if $\theta > 25^\circ$. Hence a practical optimum for cylinders is $\mu R = 1.5$.

Absorption corrections for upper levels of the equiinclination Weissenberg-cylindrical specimens

In the equi-inclination case, Fig. 8 both the on coming and the departing rays make an angle $90^{\circ} - \nu$ with the cylinder axis. Hence the path lengths p_1 and p_2 of Fig. 3 become $p_1 \sec \nu$ and $p_2 \sec \nu$ in Fig. 8.

Fig. 8. Path lengths and angles for upper levels.

Also the volume element is $w \sec \nu \Delta S$. Hence the power received by a properly placed radiation detector is from equation (2):

$$P_{r} = I \varrho_{r} \sum_{\nu} \exp(-\mu \sec \nu \cdot p) \Delta V$$

or
$$P_{r} = \pi R^{2} I \varrho_{r} w \sec \nu \sum \exp\left[(-\mu \sec \nu) \varrho\right] \Delta s . \quad (6)$$

Setting $\mu' = \mu \sec \nu$ it is seen that the function under the summation is $A(\mu'R, \Upsilon/2)$. If ν goes to zero $\Upsilon/2$ becomes θ and μ' becomes μ so that $A(\mu'R, \Upsilon/2)$ goes to $A(\mu R, \theta)$. To compare reflections in the same level it is necessary only to compare the respective values of $P_v A^*(\mu' R, \Upsilon/2) = \varrho_v \times \text{const.}$ However if we wish to compare reflections in different levels we must use

$$\rho_r \times \text{const.} = P_r \cos \nu A^* (\mu R \sec \nu, \Upsilon/2)$$
.

Spherical specimens

If we take $V = 4/3\pi R^3 v$ we may re-write equation (2)

$$P_r = \frac{4}{3\pi R^3} I \varrho_r \sum_{v} \exp(-\mu p) \Delta v$$

A machine integration of $\sum_{v} \exp(-\mu p) \Delta v$ gives the data of Table 4. It is worth noting that for $\theta = 0$ and $\theta = 90^{\circ}$ the equation is integrable. For $\theta = 0$ the absorption factor is

$$A = \frac{3}{2(\mu R)^3} \left\{ \frac{1}{2} - \exp\left(-2\mu R\right) \left[\frac{1}{2} + \mu R + (\mu R)^2\right] \right\} \,.$$

While for $\theta = 90^{\circ}$:

$$A = \frac{3}{4\mu R} \left\{ \frac{1}{2} - \frac{1}{16(\mu R)^2} \left[1 - (1 + 4\mu R) \exp((-4\mu R)) \right] \right\}$$

Optimum size for spheres

Plotting $(\mu R)^3/A^*$ shows that there is no optimum size for spheres, the total reflected energy rises continously from $\mu R = 0$ to $\mu R = \infty$ for all values of θ . The concept of 'optimum size' is misleading. The desirable condition is that the correction factor for $\theta = 0$ be not too different from the correction factor for $\theta = 90^\circ$. This is met if $\mu R < 2$, when the ratio of front to back factors is less than 2.6.

The polarization correction

The polarization correction using a monochromator (Whittaker, 1952) can be combined with the Lorentz factor as follows: Whittakers result for the equiinclination case may be written as a correction factor as

$$P = (1 + \cos^2 2e)^{-1} \{ \cos^2 2e (1 - \cos^2 \nu \sin^2 \Upsilon) \\ + 1 - \sin^2 \nu \cos^2 \nu (1 + \cos \Upsilon)^2 \},$$

where e is the Bragg angle for the monochromator.

The Lorentz factor as adapted to the equi-inclination Weissenberg by Tunnel (1939) is $L = \cos^2 \nu \sin \gamma$. Since $\cos \theta = \cos \nu \cos \gamma/2$ we can write the combined correction factor as

$$egin{aligned} P_{L} &= T\,\sin2 heta \Big/ \Big\{ 1 + \Big(rac{q-\sin^2 v}{(1+q\,\cos^2 v)}\Big) \ & imes (1+\cos2 heta)^2 - rac{2q}{1+q}\,(1+\cos2 heta) \Big\} \ , \end{aligned}$$

where $q = \cos^2 2e$

and

$$T = (\sin^2 \theta - \sin^2 \nu)^{\frac{1}{2}} / \sin \theta$$

W. L. BOND

Table 4. Absorption correction factors A^* for X-ray intensities

Spheres of radius R

μR	0•	5°	10 °	15°	20 °	25°	30°	35°	40°	45°	50°	55°	60°	65°	70 °	75°	80°	85°	90°	μR
0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0
.2	1.35	1.35	1.35	1.34	1.34	1.34	1.34	1.34	1.34	1.34	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	•2 •3
•4	1.80	1.80	1.80	1.79	1.79 2.06	1.78	1.78	1.77	1.76 2.01	1.75	1.74 1.97	1.73 1.96	1.73	1.72	1.71	1.70	1.70	1.70	1.70 1.90	•4
•6 •7	2.39 2.75	2.39	2.38	2.37	2.36	2.34	2.32	2.60	2.27	2.25	2.23	2.30	2.18	2.16	2.14	2.13	2.11	2.11	2.11	.7
.8	3.15 <u>3.61</u>	3.15	3.13	3.11	3.07	3.03	2.99 <u>3.37</u>	2.94	3.23	3.16	3.09	3.02	2.96	2.91	2.86	2.82	2.80	2,78	2.77	<u>.</u> ?
1.0	4.12	4.11	4.08	4.03	3.96	4.37	4.25	4.12	3.99	3.87	3.75	3.33	3.55	3.46	3.39	3.33	3.28	3.26	3.25	1.1
1.3	6.08	6.05	5.97	5.84	5.67	5.47	5.27	5.06	4.85	4.66	4.48	4.32	4.17	4.0L	3.94	2.85	3.79	3.75	3.73	1.3 1.4
1.5	7.80	7.75	7.60	7.38	7.09	6.77	6.44 7.08	6.11 6.69	5.81	5.52	5.26	5.03	183	4.65	4.51 4.80	4.39	4.57	4.26	4.23	1.5 1.0
1.7	9.92 11.2	9.83 11.0	9.59 10.7	9.21	9.69	8.26	7.76	7.29	6.85 7.40	6.45	6.10 6.53	5.78 6.17	5.51 5.87	5.28 5.60	5.09 5.39	4.94	4.83 5.10	4.77	4.74 4.97	1.7
$\frac{1.9}{2.0}$	12.5	12.4	12.0	11.4	10.7	9.95 10.9	<u>9.24</u> 10.0	9.26	7.98	7.44	<u>6.97</u> 7.43	6.57	6.22	5.97	5.69	5.50	5.37	5.28	5.50	2.0
2.1	15.6	15.4	14.8	13.9	12.9	11.8	10.9	10.7	9.18	9.03	8.36	7.80	7.33	6.93	6.61	6.36	6.17	6.06	6.02	2.2
2.4	21.5	21.0	19.9	18.4	16.7	15.0	13.5	12.2	11.1	10.1	9.32	8.65	8.08	7.61	7.23	6.93	6.72	6.85	6.54	2.4
2.6	26.3	25.6	24.0	21.8	19.5	17.3	15.4	13.8 14.6	12.4 13.1	11.3	10.3 10.8	9.51 9.94	8.85	8.30	7.86 8.17	7.52 7.81	7.27 7.54	7.12 7.38	7.06 7.33	2.6
2.8	31.9 35.0	30.9 33.9	28.6 31.2	25.6	22.6	19.8	17.4	15.4	13.8 14.5	12.4 13.0	11.3	.10.4 10.8	9.62 10.0	8.95 9.34	8.49 8.81	?.10 <u>8.40</u>	7.82	7.65	7.59	2.8
3.0	38.4 42.0	37.0	33.9 36.7	29.9 32.1	25.9 27.7	22.4	19.5 20.6	17.1	15.2 15.9	13.6	12.3	11.3	10.4	9.70	9.13	8.99	8.38	8.18	8.38	3.0
3.3	45.8	43.9	39.7	34.4	29.5	25.2	22.8	18.9	17.4	14.8	13.9	12.6	11.6	10.2	10.1	9.59	9.21 9.49	999	8.90	3.3
3.5	58.9 63.8	56.0	49.5	41.9	35.2	29.5	25.1	21.6	18.9	16.7	14.9	13.5	12.4	11.2	10.7	10.2 10.5	9.77 10.1	9.52 9.79	9.43 9.69	3.5
3.7	69.0 74.6	65.1 70.1	56.8 60.6	47.3	39.2	32.6	27.4	23.4	20.4 21.1	17.9 18.6	16.0 16.5	14.5	13.2 13.6	12.2 12.6	$11.4 \\ 11.7$	10.8	10.3 10.6	10.1 10.3	9.96 10.2	3.7 3.8
3.9	80.4	75.3	64.6	53.1 56.0	43.3	35.7	29.8 31.0	25.3	21.9	<u>19.2</u> 19.8	17.1	$\frac{15.4}{15.8}$	14.0	$\frac{1^{\circ}.9}{13.3}$	12.0	11.4	10.9	10.6	$-\frac{10.5}{10.2}$	
4.1 4.2	93.0 99.8	86.4 92.4	73.1 77.5	59.1 62.2	47.6 49.9	38.8 40.5	32.2 33.4	27.2 28.2	23.4 24.2	20.5 21.1	18.2 18.7	16.3 16.8	14.8 15.2	13.e 14.0	12.7	12.0	11.5	11.1	11.3	4.1
4.3	10.7	98.6 10.5	82.1 86.8	65.3 68.6	52.1 54.4	42.1 43.7	34.7 35.9	29.2 30.1	25.0 25.8	21.8 22.4	19.3 19.8	$17.2 \\ 17.7$	15.7 16.1	14.L 14.7	$13.4 \\ 13.7$	12.6 12.9	12.0 12.3	11.7 11.9	11.5	4.3 4.4
4.5	12.2	11.2	91.7	71.9	56.7 59.0	45.4	37.2	31.1	26.6	23.1	20.3	18.2	16.5	15.1	14.0	13.2	12.6	12.2	12.1 12.3	4.5
4.8	14.8	13.4	10.7	82.1	63.7	50.5	41.0	34.1	28.9	25.0	22.0	19.1	17.7	15.8	15.0	14.1	13.4	12.8	12.9	4.7
5.0	16.7 17.7	15.0	11.8	89.1 92.7	68.5	53.9	43.5	36.1	30.5	26.4	23.1	20.6	18.5	16.9	15.7	14.7	14.0	13.6	13.4	5.0
5.2	18.8 19.9	16.7 17.6	12.9 13.5	96.4 10.0	73.4	57.4 59.2	46.1 47.4	38.1 39.1	32.2 33.0	27.7	24.2	21.5	19.4 19.8	17.7 18.0	16.3 16.7	15.3 15.6	14.6 14.9	14.1	13.9	5.2
5.4	21.0 22.2	18.5	14.1	10.4	78.4 80.9	60.9 62.7	48.8 50.1	40.1 41.1	33.8 34.6	29.0 29.7	25.3 25.9	22.5 22.9	20.2 20.6	18.4 18.6	17.0 17.3	15.9 16.2	15.1 15.4	14.6 14.9	14.5 14.7	5.4
5.7	24.7	20.4	16.0	11.5	86.0	66.3	52.7	43.2	35.4	30.3	26.4	23.4	21.0	19.1	17.7	16.5	15.7	15.2	15.0 15.3	5.6
5.8-	27.4	23.5	17.3	12.3	91.2	69.9	55.4	45.2	37.9	32.3	28.1	24.9	22.3	20.3	18.7	17.5	16.6	16.0	15.5	5.8
6.1 6.2	30.3 31.8	25.7	18.6 19.3	13.1 13.5	96.4 99.1	73.6	58.1	47.3	39.5	33.7	29.3	25.8	23.1	21.0	19.3	18.1	17.1	16.5	16.3	6.1
6.3 6.4	33.4 35.0	28.0	20.0 20.7	13.9 14.3	10.2 10.4	77.2 79.1	60.8 62.2	49.4	41.2 42.0	35.0	30.4 31.0	26.8	24.0	21.7	20.0	18.7	17.7	17.1	16.9	6.3
6.5 6.6	36.6 38.3	30.5 31.8	21.4 22.1	14.8 15.2	10.7 11.0	81.0 82.8	63.5 64.9	51.5 52.5	42.8 43.6	36.4 37.1	31.5 32.1	27.8	24.8	22.5	20.7 21.0	19.3 19.6	17.3	17.6	17.4	6.5 6.6
6.8	40.1	33.1	22.9	15.6	11.2	84.7 86.6	66.3	53.6 54.6	44.5	37.8	32.7	28.7	25.7 26.1	23.2	21.3 21.7	19.9 20.2	13.8	18.2 19.4	17.9 18.2	6.7 6.8
7.0	45.7	37.1	25.1	16.9	12.1	90.4	70.4	56.7	47.0	39.1	34.4	30.2	26.9	24.0	22.0	20.5	19.4	18.7	18.4	
7.2	49.8	40.0	26.7	17.7	12.6	94.1	73.2	58.9	48.7	41.2	35.5	31.1	27.8	25.1	23.0	21.4	20.3	19.5	19.0	7.2
7.1	54.0 56.3	43.Ó 44.5	29.3 29.1	18.6	13.2 13.5	98.0 99.9	76.0 77.4	61.0 62.0	50.3 51.2	42.5	36.6	32.1 32.6	28.6	25.8 26.0	23.7	22.1	20.8	20.1	19.8	7.4
7.6	58.5 60.9	46.0 47.6	29.9 30.7	19.5 20.0	13.7 14.0	10.2 10.4	78.8 80.2	63.1 64.2	52.0 52.8	43.9 44.6	37.8	33.1 33.6	29.4	26.6 27.0	24.4	22.7	21.4	20.6	20.3	7.6
7.8	63.3 65.7	<u> </u>	31.5 32.4	20.4	14.3	10.6	81.6 83.0	65.2 66.3	53.7	45.3	38.9	34.1	30.3 30.7	27.3	25.0	23.8	22.0	21.2	20.8	7.8
3.1 8.1	70.9	54.3	33.4	21.3	15.2	11.1	84.4	68.4	56.2	40.0	40.1	35.0	31.1	28.1	25.7	23.9	22.5	21.7 22.0	21.4	8.0 8.1
8.3	76.2	57.8	35.8	22.7	15.7	11.5	88.5	70.6	57.9	48.7	41.2	36.5	32.0	29.2	26.4	24.5	23.1	22.2	22.2	3.2 8.3
8.5	81.9 94.8	61.4 63.2	37.5	23.6	16.3 16.6	11.9	91.5	72.7	59.6 60.4	50.1	42.9	37.5	33.3	30.0	27.4	25.4	24.0	23.1	22.7	9.5
3.7 8.8	87.8 90.9	65.1 67.0	19.3 40.2	24.6	16.9 17.2	12.3	94.3 95.8	74.9 76.0	61.3 62.1	51.4 52.1	44.1 44.7	38.5 39.0	34.1 34.6	30.7 31.1	28.1	26.1	24.5	23.6	23.2	8.7 8.8
<u>8.9</u> 9.0	94.0	<u></u>	41.1	25.5	17.5	<u>12.7</u> 12.9	97.2 98.6	77.1	63.0 63.9	52.8 53.5	45.2	39.5	35.0	31.5 31.8	28.7	26.7	26.1	24.2	23.8	
9.1	1005	72.9	42.9	26.4	18.0	13.1	10.0	79.3 80.4	64.7 65.6	54.2 54.9	46.4	40.4	35.8 36.2	32.2 32.6	29.4 29.7	27.3	25.7 26.0	24.7 25.0	24.3 24.6	9.1 9.2
9.3	1072	77.0	44.8	27.4	18.6	13.5	10.3	81.5 92.6	67.3	55.6	47.5	41.3	36.6	32.9	30.1	27.9	26.3	25.2	24.2	9.3 2.4
9.6 9.7	1180	83.3	47.6	28.8	19.5	14.1	10.7	84.8	69.1	57.7	49.1	42.7	37.7	33.9	31.0	28.8	27.1	26.1	25.6	9.5
9.8 9.9	1255 1294	87.7 89.9	49.5	29.8	20.1	14.5	11.0	87.0	70.8	57.1	50.2	43.5	38.4	34.6	31.7	29.5	27.7	26.6	26.2	9.8
10.0	1333	92.1	51.4	30.8	20.7	14.9	11.3	89.3	72.6	60.5	51.2	44.2	39.0	35.2	32.3	36 . 1	38.3	27.2	26.7	16.0

The writer wishes to thank Miss Dolores Leagus for planning and making the machine calculations and Dr V. M. Wolontis for catching some algebraic errors and for the general help he rendered. He wishes also to thank Dr S. Geller for his interest in this work and for many helpful suggestions.

References

BENEDICT, T. S. (1955). Acta Cryst. 8, 747.
BOND, W. L. (1955). Acta Cryst. 8, 741
BRADLEY, A. J. (1935). Prac. Phys. Soc. 47, 879.
CLAASSEN, A. (1930). Phil. Mag. 9, 57.
TUNNEL, G. (1939). Am. Min. 24, 448.
WHITTAKER, E. J. W. (1953). Acta Cryst. 6, 222.

•